Japan-Korea powder technology symposium 2015 Sept.14,2015 Hold on Soul National University

Studies of milling technology's approaches for establishing the chemical recycles on some wasted glasses.

OMasataka KAMITANI¹⁾²⁾, Mitsunori KONDO¹⁾, Atsushi NAKAHIRA²⁾

Makino corporation (Aichi Tokoname, Japan)
 Graduated School of Osaka Prefecture University.(Osaka Sakai, Japan)

1. The Objects and Targets of This study.

Objects of this study

- To explore the possibilities of chemical recycle technology
- Material science approaches for environmental cleanup

Targets of development

- With wasted glass materials
- Silicate devices for environment cleanup
- In-line measurement system development

2. Some directions for wasted glass chemical recycle applications

1Silicate resources for minerals and ceramics synthesis

Abstracts of Spring Meeting of Japan Society of Powder and Powder Metallurgy, 2013

IREP the first Meeting in Imabari,2013

M.kamitani, A, Nakahira, T. Wakihara, et.al ISAC-5, Wuhan, Chaina 2014

Fabrication and evaluation of hybrid materials from A-zeolite and ground glass powders for vitrified radioactive, j. ceram. soc, japan 122 (2) 151-155,2014

2 lon exchanging devices for environmental cleanup

2nd meeting on Environmental radioactive decontamination technology, Tokyo 2013 Abstracts of Autumn Meeting of Japan Society of Powder and Powder Metallurgy,2013 M.kamitani,A,Nakahira,T.Wakihara, et.al ISAC-5,Wuhan,Chaina 2014

3The dehydration condensation for like cement

Materials Science Forum Vols, 22-227 (1996) pp.587-592

Kinzoku, Vol. 68 (1998) No.9

Abstracts of Autum Meeting of Japan Society of Powder and Powder Metallurgy,2014 M.Kamitani,M.Kondo.A.Nakahira, J. Jpn. Soc. Powder Powder Metallurgy Vol. 62, No. 6,2015

Synthesized LTA in Bamboo inside pore

Condensed mass from LCDG

3. Fundamental procedure of chemically activation for wasted glass by Ball milling

Energy consumption of milling with ball media

Fracture mode of glass grain by impact

ref. Rumpf, HStruktur der Zerkleinerungswissenschaft Aufbereitungs-Technik No. 8/1966 421-435

Fig.1 model of generating forces in ball mill

Fig.2 fracture model from reference

Optimization of ball milling condition by DEM simulation

m: Ball weight
v: Impact speed
W: Specimen weight
n: Number of impact

Fig.3 DEM simulation based on Voigt model

Energy consumption

Ball: $\phi = 10-30$ mm steal Mill dimension

L=725mm diameter=725mm

Fig.4 Impact energy estimation by DEM simulation.

This point

4.Experiment and Results

1Milling test plan

Ball: $\varphi = 15$ mm steal Mill dimension

L=725mm diameter=725mm

Ball filling ratio=0.5 Raw material:24-32Kg

Νo.	Glass species	Glass weight (kg)	Ball milling condition			sampling (hr)					
			rotation (N/Nc)	Ball radius (mm)	occupy (%)	0.5	1	2	3	6	8
1	LCDG ¹⁾	32	0.95	15	50	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2		24	0.95	15	50	_	_	0	\bigcirc	0	—
3		32	0.85	15	50	-	-	0	0	\bigcirc	—
6 3)		12	0.75	15 Al ₂ O ₃	50		0	0	\bigcirc	\bigcirc	\bigcirc
4	SLG ²⁾	30	0.95	20	50	0	0	0	\bigcirc	0	\bigcirc
5		30	0.95	15	50	0	0	0	0	\bigcirc	0

1) 123: LCDG alumino-silicate glass: SiO₂/Al₂O₃/CaO/Na₂O=58.8/17.1/9.5/0.3(wt%ratio) 2) 45: Soda-Lime Glass: SiO₂/CaO/Na₂O=73/5/17(wt%ratio)

3) Test (6) is another experiment for in-line measuring system development.

Milling by small 50L mill on another glass: SiO₂/Al₂O₃/MgO/Na₂O=60.2/15.2/7.2/16.8(wt%)

Table.1Test plan

2Grain size distribution change

Fig. 5 Grain size distribution of test2 and test5 by Laser diffraction MT-3000 II

3Morphology on SEM's images

Fig.8 SEM's images of T-2 and T-5 samples that 6hr milled.

④Specific surface area

Fig.9 BET specific surface area of T-2 and T-5

measured by Bellsorp mini II.

Fig.10 XAFS profiles of T-2 and T-5

6Titration for surface analysis

Fig.11 Titration curves of T-2 and T-5 samples.

1 N-NaOH used

Solid concentration is 10% Measured by DT-1200

5. For Silica resource

LTA

Fig.12 SEM's images of autoclaved grains Test2-6hrmilling reacted in S-solution for 3-12hr at 95°C

Fig.13 XRD profiles of autoclaved sample

6. For Ion exchange device

Fig.14 BJH profiles of T-5-6hr milling samples that washed by pure water.

⁽²⁾Decomtanimation of radio active material;¹³⁷Cs

Fig.15 photos and schematic view of radioactive Cs removing test.

Table.3 Test result of removing ¹³⁷Cs

material	w/s	shaking time(min)	¹³⁷ Cs initial (Bq/kg)	¹³⁷ Cs remain (Bq/Kg)	removing(%)
washed milling Glass powder T-2-6hr&washed	10	10	1262	902	18.9
fine Mordenite		10		382.9	69.6
coarse Mordenite	10	10	126	2 786	37.7
A-type Zeolite		10		1219	3.3

7. For Dehydration Condensation

1 Hardening procedure

2Morphology

Fig.16 SEM's images of hardens samples

④ Chemical bonding

8. Inline measuring for ball milling

1 The model of glass milling from T-**6**

1st St. (Start~4hr)

Particles down sizing and agglomerates formation

formation

2nd St.(4~8hr)

Agglomerates crush and formed

crush and ronned

agglomerates

Flocks and

Agglomerates scrap and build

Fine milling

②Specific surface area measurement by NMR

A short RF Pulse B1 \triangleright Rotates H atoms

>When B1 disappears, H atoms realign with Bo producing a signal

3000

3Comparison with BET and R_{2sp}

Fig.20 The relaxation time curves on T-6

Fig.21 Comparison with cal.surface area and **BET**

9. Summery of this presentation

- 1) We've confirmed structural changes of wasted glass materials by ball milling.
- 2) By ball milling, the higher impact energy makes disorder on grain surface or inner structure, We consider they play as dissolving points, and/or to be meso scale cavities on grain surface. It is very important knowledge for the chemical recycling technology.
- 3) We've recognized these phenomenon induced by "Mechanochemical effect"
- 4) We would develop the operating methods for environmental cleanup with these devices
- 5) We've already developed the optimized milling systems on inline surface area measuring that mainly consists with P-NMR.